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a b s t r a c t

Biodiversity loss and habitat degradation are big challenges to be tackled by conservation
planning since their effects on both ecological and social-economic systems are remark-
ably detrimental. Efforts to limit anthropogenic impacts on species and habitats need to be
assisted by tools for biodiversity monitoring. Effective monitoring tools could help bridge
the gap between science and policy, better assess trade-offs between biodiversity and
other services, and potentially reduce the associated social costs of conservation. Here, we
assessed the feasibility of monitoring habitat quality for bird communities in Central Italy
using the InVEST Habitat Quality model. InVEST was parameterized using outputs from
species distribution models (SDMs) and expert-based models to explore their viability to
support conservation planning. Our results highlight that InVEST parameterized by SDMs
produced habitat quality maps that correlated highly with spatial patterns of observed
species richness, while the expert-derived InVEST outcomes showed lower correlation.
However, the latter approach proved useful as a first-line analysis to identify large-scale
areas of conservation concern, where field data and modeling approaches such as SDMs
are needed to assess fine-scale conservation value. We show SDM-informed habitat quality
maps can accurately identify conservation priority areas, though their applicability is
overall limited by data availability. On the other hand, expert-based habitat quality maps
can be used as a surrogate approach for preliminary and/or exploratory studies, especially
in contexts characterized by poor data availability/quality and budgetary constraints.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The conservation of habitats and species is at the basis of ecosystems' functionality and resilience (Mace et al., 2012), and
in turn contributes to people wellbeing via the ecosystem services (ES) provision (Cardinale et al., 2012). However, global
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transformations such as climate and land use change increasingly alter biological systems worldwide (e.g., Ellis, 2013), in
terms of e.g. species losses (Hooper et al., 2012) and subsequent greater environmental changes (Cardinale et al., 2012).
Recently, several strategies to halt biodiversity loss and reduce ecosystems’ degradation have been developed, from global
(CBD Strategic Plan for Biodiversity, 2011e2020 and the Aichi Biodiversity targets) to European scale (the EU Biodiversity
Strategy to 2020). Nevertheless, conservation targets are still far to be met, both globally (e.g., Tittensor et al., 2014) and in
Europe (European Commission, 2015). This means that further efforts are necessary to improve the currently available tools
for the assessment and monitoring of biodiversity conservation at various scales, even incorporating external barriers and
drivers (e.g. integrated modeling; Mokany et al., 2016.

Indeed, during the last decades, several initiatives have been undertaken to slow down species extinction rates, shifting of
species ranges, and habitats degradation, such as enlarging Protected Areas’ Network (Watson et al., 2014), or reducing the
gap between costs and social benefits of conservation (e.g., the case of Natura, 2000 network in Europe; Gantioler et al., 2014).
In the sameway, systematic conservation planning has been proposed as a framework to improve conservation efforts within
and outside protected areas, in particular through monitoring biodiversity threats, and incorporating modeling and mapping
tools (Margules and Pressey, 2000). Such aspects are demonstrated to improve the effectiveness of prioritizing conservation
goals, and implementing actions on ground (e.g., for Mediterranean landscapes; Levin et al., 2013). Nevertheless, much more
efforts are needed to halt biodiversity loss and habitat degradation at both global (i.e., entering the sixth mass extinction;
Ceballos et al., 2015) and EU scale (Maiorano et al., 2015).

On the research side, biodiversity modeling e consisting of process- and expert-based approaches e has been demon-
strated to support conservation planning in several ways (e.g., Clevenger et al., 2002; Guisan et al., 2013). Species distribution
models (SDMs) are the most widely used correlative models (see Elith and Leathwick, 2009 for an exhaustive review) and are
able to support conservation planning (McShea, 2014) by: (i) identifying short-term consequences of policy decisions that can
be then evaluated; (ii) constructing future scenarios to be discussed with stakeholders; and (iii) bridging the gap between
research and policy making, typically in an iterative process involving revisions to the modeling approach, parameters, and
scenarios. However, SDMs are prone to some weaknesses and pitfalls, which mainly concern the representation of niches,
sampling biases, failure in accounting for species associations, scale mismatches, and predictive accuracy evaluation (Araújo
and Guisan, 2006; Fourcade et al., 2018; Morelli and Tryjanowski, 2015, 2014; Sinclair et al., 2010). In particular, while
supporting conservation planning, an important limitation of (mostly static) SDMs stems from uncertainty in future pro-
jections, i.e. the difficulty to incorporate changing environmental parameters, climate, and other variables (e.g., McShea,
2014). Furthermore, conservation planners should implement SDMs according to contextualized needs, ecology of species,
and data availability (e.g., Johnson and Gillingham, 2005). Improving effectiveness of both modeling and decision-making
processes, while reducing uncertainty linked to the adopted approaches and environmental variables taken into consider-
ation, is extremely important in conservation planning. For example, expert-based approaches have been successfully
adopted to model distribution and abundance of sambar deer in Australia (Yamada et al., 2003), as well as map distribution of
“focal species” in Northern Italy (Gobbi et al., 2012). Even though experts often play a key role in supporting model devel-
opment and interpretation of results at relatively low costs, their knowledge and rationale behind may be less transparent
and robust than other approaches, i.e. correlative ones (e.g., Johnson et al., 2004).

Species distribution and richness are strongly interconnected with the suitability of a site (i.e., habitat). Habitat suitability
assesses the likelihood a certain location can host a given species over a spectrum of environmental conditions. In turn,
habitat loss and degradation are useful for indicating to conservation planners a reduced probability to find a species within
its distribution range, as well as for highlighting threatened areas critical for biodiversity conservation (Johnson, 2007;
Terrado et al., 2016). Several studies have focused so far on calibrating SDMs for common birds in Europe (e.g. Vallecillo et al.,
2016). On the same line, recent efforts have been made to strengthen the utility of models combining habitat suitability and
potential threats to assess habitat quality (HQ) as a support to conservation planning. For example, the models implemented
in the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) software have been used to analyze changes in HQ in
freshwater ecosystems in Spain (Terrado et al., 2016), map HQ in relationwith biodiversity protection levels in Italy (Sallustio
et al., 2017), and spatially correlate HQ and multiple ES according to alternative scenarios in a Taiwanese watershed (Lin et al.,
2017). Nevertheless, further research is needed to explore the potential contribution of SDMs and expert-based models in
providing information to aid spatially-explicit assessment of HQ, especially in conservation planning (Store and Kangas,
2001). Indeed, the possibility to obtain cost-effective and reliable spatially eexplicit information on HQ, and more gener-
ally on ES, is particularly relevant to identify optimal scenarios of habitat protection and restoration (e.g., Crossman and Bryan,
2009; Lehtom€aki and Moilanen, 2013). This need is crucial in data-poor and multiple stakeholders' demands contexts (e.g.,
coastal areas; Rova et al., 2018), where approaches like systematic conservation planning (Lehtom€aki andMoilanen, 2013) can
offer a viable support in the decision-making arena, even facilitating stakeholders' engagement and active participation as
well as trade-offs analysis among multiple ES (Lin et al., 2017; Pandeya et al., 2016). InVEST represents a comprehensive and
flexible decision support tool not limited to conservation planning, but, broadly, to landscape policy and planning (Sallustio
et al., 2017). For instance, this tool allows to i) enlarge the bundle of ES taken into account, thus allowing to explore the impact
of certain choices on ES other than biodiversity, ii) actively engage stakeholders in the ES assessment and scenario building,
iii) have a free and open-source interface easily adaptable to specific users’ needs. These features clearly represent an
advantage if expanding nature conservation purposes out of the strictly designed protected areas as e.g. in the perspective of a
working lands conservation approach (Kremen and Merenlender, 2018).
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Considering the above-mentioned issues, the present work aims to compare two approaches to modeling HQ within the
InVEST toole one based on SDMs, the other based on expert opinione and assess the implications for conservation planning.
HQ of bird communities in central Italy is mapped by using two alternative parameterizations of InVEST. In particular, we
alternatively input InVEST with a SDMs-derived and an expert-judgment derived species richness index, obtaining two bird-
specific HQ predictions for the study area. Predictive accuracy of the two HQ predictions was then evaluated by using in-
dependent data on bird species richness. The specific objectives of the study were to: (i) predict bird species distribution and
richness using SDMs and expert-opinion approaches; (ii) calculate HQ from SDMs-derived and expert-based derived species
richness indexes; (iii) evaluate predictive accuracy of HQ predictions; (iv) identify spatial aggregates in HQ predictions.
Finally, recommendations on how SDMs and expert-based models can be used for conservation planning are drawn, along
with related potentialities and limitations of both approaches.

2. Materials and methods

2.1. Study area

The study area encompasses the Molise region (Central Italy), covering ca. 450,000 ha with altitude ranging from sea level
to 2050m a.s.l. Climate heterogeneity, ranging from aMediterranean type along the coastline to continental characteristics in
the interior (Pesaresi et al., 2017), coupled with the litho-morphological variability (Smiraglia et al., 2013) strongly influence
habitat diversity through the region. This is demonstrated by the coexistence of different ecosystems and potential natural
vegetation types (Blasi et al., 2017).

The land cover comprises more than 157,000 ha of Mediterranean and temperate forests (approximately 35% of the study
area), with also ca. 49% of croplands and grasslands (Sallustio et al., 2016; Vizzarri et al., 2015a). Forests are dominated by
Turkey oak (Quercus cerris L.) (40% of the total forest area), downy oak (Q. pubescensWilld.) (22% of the total forest area), and
European beech (Fagus sylvatica L.) (9.5% of the total forest area) (Vizzarri et al., 2015a). Forests are primarily managed as
coppices (76% of the total forest area) rather than high forests (Bottalico et al., 2016) thus further contributing to habitat
diversification.

2.2. Analytical framework

The analytical framework proposed in this study included three main components: SDMs, expert-based (EXBAS) and
InVEST models (Fig. 1). We alternatively used SDMs and EXBAS to predict bird species distribution in the study area. Single-
species distributions derived by eachmethod were then stacked (D'Amen et al., 2015; Distler et al., 2015; Scherrer et al., 2017)
obtaining two species richness predictions. We used these richness predictions as input data for InVEST, along with a species-
specific threats matrix derived from expert knowledge. Using these inputs, InVEST generated two predictions of HQ for bird
species in the study area, whose spatial accuracy was evaluated using independent occurrence data. Finally, we assessed the
Fig. 1. Analytical framework.
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coherence between the two InVEST predictions in identifying areas of high/low conservation concern by calculating HQ
hotspots/coldspots (Sallustio et al., 2017) and cross-tabulation matrices (Pontius et al., 2004).
2.3. Predicting species distributions

2.3.1. Correlative models
As most of the analyzed species are widely distributed across the Palearctic (BirdLife International, 2015), with the study

area representing just a small portion, SDMs were produced using a hierarchical structure, from global to regional scale (Di
Febbraro et al., 2015; Gallien et al., 2012; Lomba et al., 2010), in order to avoid truncated niche estimations that could bias the
predictions (Barbet-Massin et al., 2010; Guisan et al., 2014; Raes, 2012). Accordingly, models were at first implemented to
estimate species niches at their global range scale using bioclimatic variables (Global SDMs; Appendix S1). Then, local pre-
dictors (see below) were used to refine the predictions at a regional scale (Regional SDMs, ‘SDMs’ hereafter; Di Febbraro et al.,
2015; Gallien et al., 2012; Lomba et al., 2010).

Presence/absence data used for SDMs calibration were derived from the “Italian Breeding Bird Monitoring” (MITO2000
Project; Fornasari et al., 2010, but see also Chiatante, 2017; Stephens et al., 2016; Valerio et al., 2016) spanning from 2009 to
2013. The MITO2000 sampling scheme is based on the UTM 10 km� 10 km grid over the Italian peninsula. Within each
UTM square, bird surveys are conducted yearly by the point counts method in 15 sites randomly placed at a minimum
distance of 1 km (Fornasari et al., 2010). Occurrence data derived by point counts surveys have been successfully used to
predict bird species distribution in several studies (Brotons et al., 2007; Howard et al., 2014; Moudrý et al., 2017; Sheehan
et al., 2017; Vallecillo et al., 2009). Data were filtered by removing duplicated records, thus obtaining a final dataset of 263
sampling points randomly located within the study area. We considered only species occurring in at least 25 sites, retaining
29 species in total (Table S1). Data were temporally split in two blocks (Roberts et al., 2017; Smith et al., 2013), a first set
including 185 records (2011e2013) adopted to train SDMs and a second set of 78 points (2009e2010) used as independent
data to evaluate the final InVEST outputs (i.e., the two HQ maps). This data splitting setup allowed calibrating SDMs on
approximately two-thirds of the available occurrence records, while keeping the remaining one-third for evaluation pur-
poses. To check for spatial independence of calibration data (Dormann et al., 2007; Zuur et al., 2010), we tested SDMs re-
siduals for spatial autocorrelation using Moran's correlograms (Bellamy et al., 2013; Di Febbraro et al., 2015; Pottier et al.,
2013; Sheehan et al., 2017). In addition, we tested if values of environmental variables sampled at calibration sites were
statistically different from those sampled at an equal number of points randomly placed in the study area (see Appendix S2
for further details).

The initial set of environmental predictors included 19 bioclimatic and six topographic variables, in combination with 13
habitat heterogeneity predictors derived from remotely sensed products (see Table S2). The bioclimatic variables were
derived from the WORLDCLIM database (Hijmans et al., 2005; http://www.worldclim.com/current) at a native resolution of
1 km. To equalize the spatial resolution of predictors, bioclimatic variables were statistically downscaled following Dullinger
et al. (2012; Appendix S3) to 250 m, thus according to the spatial resolution of remotely sensed products (see below). The
digital elevation model (DEM) was derived from Jarvis et al. (2008) at a spatial resolution of 100m, aggregated at 250m
through a bilinear interpolation, and used to derive the slope map and the topographic roughness index (Wilson et al., 2007).
To calculate habitat heterogeneity predictors, we used the MODIS Enhanced Vegetation Index (EVI) product (MOD13Q1
version 5; 250m resolution), an index correlated to net primary productivity (Ramesh et al., 2017). We extracted the 90th
percentile of EVI from 16-day composites between 2011 and 2013 to capture the greenness of the land surface at the peak of a
growing season, while avoiding the inclusion of spuriously high EVI values (Tuanmu and Jetz, 2015). Starting from these
layers, we used amoving-windowapproach testingmultiplewindow radius lengths (Ducci et al., 2015; see also Appendix S4),
to calculate 13 textural metrics of habitat heterogeneity (Tuanmu and Jetz, 2015; Table S2). We applied the same approach
also to topographic predictors, calculating their mean and standard deviation values within the moving-windows. The final
set of 10 predictors was subselected considering a variance inflation factor �3 (Zuur et al., 2010, Table 1).
Table 1
Final set of predictors used for SDMs calibration. For topographic and habitat heterogeneity predictors, the selected radius for the moving window approach
is indicated (see also Appendix S4).

Variable Type Acronym Moving window radius

Temperature seasonality Bioclimatic BIO4 none
Temperature annual range Bioclimatic BIO7 none
Mean temperature of wettest quarter Bioclimatic BIO8 none
Precipitation seasonality Bioclimatic BIO15 none
Mean slope Topographic SLOPE_MN 5000m
Mean EVI Habitat heterogeneity EVI_MN 500m
EVI uniformity Habitat heterogeneity EVI_ASM 1000 m
EVI correlation Habitat heterogeneity EVI_CORR 2000 m
EVI contrast Habitat heterogeneity EVI_CONTR 5000m
EVI difference variance Habitat heterogeneity EVI_DV 5000m

http://www.worldclim.com/current
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To avoid models overfitting, a problem that is commonwhen only few occurrences are available relative to the number of
predictors (Guisan and Zimmermann, 2000), we opted for the “ensemble of small models” approach (Breiner et al., 2015; Di
Febbraro et al., 2017). In particular, we calibrated for each species a set of models considering all possible combinations of the
10 variables taken two at a time (for a total of 45 combinations; Breiner et al., 2015). The final ensemble model was calculated
as the average of the 45 models weighted on their respective AUC values (see below). SDMs were calibrated using an
ensemble forecasting approach, as implemented in the R package “biomod2” (Thuiller et al., 2009). We considered the
following four modeling algorithms (Niittynen and Luoto, 2017): generalized linear models (GLM), generalized additive
models (GAM), generalized boosted models (GBM), and random forests (RF). Each occurrence dataset was randomly split into
an 80% sample, used for the calibration of the model, and a remaining 20%, used to evaluate model predictive performance,
repeating the procedure 10 times. The predictive performance of each model was assessed by measuring the area under the
receiver operating characteristic curve (AUC; Hanley and McNeil, 1982) and the true skill statistic (TSS; Allouche et al., 2006).
Values of AUC (TSS) range from 0 (�1) for models with no predictive ability, to 1 for models giving perfect predictions (Landis
and Koch, 1977; Swets, 1988). To avoid using poorly calibrated models, only projections from models with AUC �0.7 were
retained in the subsequent analyses. The model averaging was performed by weighting the individual model projections by
their AUC (Marmion et al., 2009). Finally, we calculated species richness by stacking continuous suitability maps (Calabrese
et al., 2014; D'Amen et al., 2015; Distler et al., 2015; Niittynen and Luoto, 2017; Scherrer et al., 2017; Fig. S1).

2.3.2. Expert-based models
We developed EXBAS models by evaluating the habitat suitability of each bird species according to the land cover cate-

gories (sensu Terrado et al., 2016). Specifically, we asked four experts with a strong ornithological background and a solid
knowledge on the study area to assign suitability scores to the 29 bird species according to the 27 III level land cover cate-
gories derived by the Corine Land Cover 2012 (https://www.eea.europa.eu/data-and-maps/data/clc-2012-raster; Table S3).
We considered three levels of habitat suitability (Rondinini et al., 2011): high (the primary habitat of a species), medium (the
secondary habitat where a species can occur), and unsuitable (where species cannot occur). The land cover map was then
reclassified according to suitability scores and rasterized at 250m spatial resolution. SDMs calibration data (see above) were
used to assess EXBAS models predictive performance by calculating the Boyce index (Hirzel et al., 2006). Values of the Boyce
index range between �1 (no predictive ability) and þ1 (perfect predictions), where values close to 0 mean that the model is
not different from a randommodel. Finally, we binarized EXBAS predictions by assigning “1” (i.e., presence) to the cells with
high and/or medium suitability values and “0” (i.e., absence) to unsuitable cells, as suggested by Rondinini et al. (2011), then
stacking the resulting maps to produce the EXBAS species richness map (Fig. S1).

2.3.3. Habitat quality assessment
The InVEST HQmodel (Sharp et al., 2016) has beenwidely used to calculate this metric with several conservation planning

purposes as already seen in the introduction section. Modeling HQ with InVEST requires setting four input parameters: i) the
habitat suitability (H), i.e. the suitability of a land cover class to provide habitat for a given species (Leh et al., 2013); ii) the
sensitivity of each land cover class to a given threat (S); iii) the relative impact of each threat (W); iv) the maximum distance
between the land cover and the threat beyond which the threat does not affect habitat quality (Max.D). For further details on
the InVEST Habitat Quality model and its parameterization, please see Sallustio et al. (2017) and Sharp et al. (2016).

We implemented two alternative InVEST parametrizations, i.e. by translating H input values from the species richness
maps obtained through SDMs and EXBAS, respectively. In particular, richness values were rescaled between 0 and 1 on their
maximum and then used as H values. In addition, we ran InVEST models on a pixel base, i.e. without aggregating cells in land
cover classes, in order to account for the variability in the species richness values predicted by SDMs within the same land
cover class. We used the same approach for both InVEST parametrizations, even though, for EXBAS, pixels belonging to the
same land cover categories had the same H value. The four experts were asked to evaluate the impact of 16 threats on each
bird species in terms of S, W andMax.D. Threats values for each species were then averaged obtaining a unique value for each
parameter (see Table S4 for the list of threats). The same threats values were used in both the InVEST parametrizations (i.e.,
SDMs- and EXBAS-driven). Five maps of HQ were obtained, four through EXBAS (one per expert) and one through SDMs. The
four EXBAS HQ maps were then averaged. Average HQ values and their variability (i.e., coefficient of variation), at regional or
land cover class level, were calculated through the “Zonal Statistic” tool in the ESRI ArcGIS® software package.

To evaluate the spatial accuracy of HQ predictions derived by the two alternative InVEST parametrizations, we regressed
predicted HQ values against observed species richness from independent (2009e2010) data, calculated as the count of bird
species occurring at each sampling site (D'Amen et al., 2015). Specifically, we considered the slope and the coefficient of
determination (R2) of each regression, also calculating the Pearson's correlation coefficient r between observed species
richness and the predicted values of HQ.

2.4. Habitat quality hotspots/coldspots

We calculated the Anselin Local Moran's I statistic (as implemented in the “Cluster and Outlier Analysis” tool in the ESRI
ArcGIS® software package) on EXBAS and SDM habitat quality maps to highlight the spatial similarity/dissimilarity of HQ
values (clusters and outliers, respectively). Cluster and outliers analysis is widely recognized for its valuable contribution in
supporting, e.g., strategic and systematic conservation planning, GAP analysis to check for the effectiveness of existing
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protected areas, or the prioritization of conservation efforts (Lin et al., 2017; Sallustio et al., 2017). Indeed, this analysis allows
for comparing not only the single values obtained through the two approaches but also their spatial aggregation in the study
area. The output of the clustering algorithm can be summarized as: i) outliers inwhich a high value is primarily surrounded by
low values (HL), ii) outliers in which a low value is primarily surrounded by high values (LH), iii) statistically significant (0.05
level) clusters of high values (namely hotspot; HH), and iv) statistically significant (0.05 level) clusters of low values (namely
coldspot; LL), (see ESRI 2014 for more details). Hotspots/coldspots outcomes deriving by the two InVEST parametrizations
were compared by means of a cross-tabulation matrix, an approach formerly proposed by Pontius et al. (2004) in land use
science to analyze land use changes and persistence.

3. Results

SDMs achieved a good predictive performance (sensu Landis and Koch, 1977 and Swets, 1988) reporting a mean
AUC¼ 0.814 (±0.051) and a mean TSS¼ 0.592 (±0.094). EXBASmodels also reached good predictive performances, showing a
mean Boyce index¼ 0.743 (±0.314), with none of the experts scoring average Boyce index values< 0.60. For the largemajority
of the species, no spatial autocorrelation was observed in models residuals, also remaining very low even when significant
(Moran's I¼�0.004; see Appendix S2).

InVEST predictions showed higher mean HQ values under the SDM parameterization than under EXBAS (0.70 and 0.44,
respectively), even though both parametrizations show the same range of variation (i.e., 0.79). HQ map obtained through
EXBAS showed a higher coefficient of variation than SDMs (40.9% and 11.4%, respectively), also highlighting more clumped
and aggregated HQ values (Fig. 2). In addition, the four HQmaps derived by the four experts’ judgments reported a coefficient
of variation of 16.2%, ranging from 38.5% in urban areas to 11.8% in other wooded lands. Overall, both maps showed a clear
polarization of high and low HQ values. Specifically, high HQ values are clustered mostly in the north-west and south parts of
the region, whereas low HQ values occur in south-west and east sides of the region (Fig. 2).

Marked differences emerged in the spatial accuracy of habitat quality predictions driven by SDMs and EXBAS outputs.
Specifically, InVEST predictions using EXBAS outcomes showed significant albeit low Pearson's r (0.36; p< 0.01) and
regression slope values (4.14; p< 0.01), with a R2¼ 0.10. On the other hand, InVEST predictions based on SDMs outcomes
showed high, significant Pearson's r (0.61; p< 0.01) and regression slope values (19.21; p< 0.01), with a R2¼ 0.38 (Fig. 3).

Cluster and Outlier Analysis highlighted that most of the HQ hotspots for both EXBAS and SDM occur in south-western
parts of the study area, while coldspots are mainly located in the east side (Fig. 4). HQ hotspots and coldspots have
approximately the same extension, covering 35% and 34% of the study area, respectively (Table 2). Despite this, the map
obtained through EXBAS has a higher relative coverage of outlier pixels (i.e., pixels with high HQ values surrounded by pixels
with low HQ values and vice-versa) than SDM (13% and 6%, respectively). Conversely, the latter shows a higher coverage of
pixels classified as “not significant” (19% and 25%, respectively).

According to the cross-tabulation matrix, the overall agreement between the two HQ maps is 51.7%. Particularly, the
relative agreements with respect to SDM map (total values in rows), range from 61 to 64% for hotspots and coldspots, to 10%
for LH (pixels with lowHQ values surrounded by pixels with high HQ values). Furthermore, the degree of agreement between
HQ hotspots for EXBAS and SDM is particularly high within natural and semi-natural land uses (i.e., other wooded lands and
Fig. 2. Habitat quality predicted by InVEST. The left (right) panel depicts the InVEST predictions driven by EXBAS (SDMs) outcomes.



Fig. 3. Evaluation of InVEST HQ predictions with observed species richness (n¼ 78). Left (right) panel shows regression line between observed species richness
and habitat quality prediction driven by SDMs (EXBAS).

Fig. 4. Maps of the HQ clusters and outliers obtained through EXBAS (left side) and SDM (right side) approaches. The four clusters and outliers classes are: HL
(outliers in which a high value is surrounded primarily by low values), LH (outliers in which a low value is surrounded primarily by high values), HH (clusters of
high values-hotspots), LL (clusters of low values-coldspots), and NS (non-significant).
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Forests, with 58 and 86%, respectively; Fig. 5). By contrast, HQ coldspots for EXBAS and SDM showed the highest degree of
agreement within anthropized land uses (i.e., urban, pastures and grasslands, and agriculture, with 51, 68 and 75%,
respectively).
4. Discussion and conclusions

4.1. Potentialities and limitations of habitat quality mapping

The present work is focused on independently testing the predictive accuracy of two alternative implementations of the
InVEST model to map HQ for bird communities in central Italy. Specifically, we compared InVEST predictions derived by



Table 2
Cross tabulation matrix for HQ clusters and outliers’maps derived by Species Distribution Models (SDM; rows) and Expert-based Models (EXBAS; columns),
respectively. Values refer to the relative pixel coverage (%) with respect to the entire study area extent. Entries along the diagonal (in bold) indicate the degree
of agreement for the different clusters and outliers categories between the two maps (see also Pontius et al., 2004).

EXBAS

SDM HH HL LH LL NS Total
HH 22% 1% 4% 3% 6% 35%
HL 0% 0% 0% 1% 1% 3%
LH 1% 0% 0% 1% 0% 3%
LL 3% 3% 1% 22% 5% 34%
NS 8% 2% 1% 7% 7% 25%
Total 35% 6% 7% 34% 19% 100%

Fig. 5. Degree of agreement (in percentage) between hotspots (HH, blue bars) and coldspots (LL, red bars) maps derived by EXBAS and SDM approaches.
Agreement was evaluated for each land use category, separately. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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correlative (i.e., SDMs) and expert-based (i.e., EXBAS) distribution models and evaluated their performance using indepen-
dent data. Overall, InVEST parametrized through SDMs generated more accurate HQ predictions than EXBAS. However,
further results from a cluster and outlier analysis reveal that spatial aggregates of HQ values are mostly concordant between
the two modeling approaches.

The higher accuracy achieved by SDMs-derived InVEST prediction compared to EXBAS is primarily linked to the high
predictive performance of single-species SDMs, which is very close to that obtained in other studies on bird species at Eu-
ropean (e.g. Thuiller et al., 2004), national (e.g. Heikkinen et al., 2007), regional (e.g. Brotons et al., 2012; De C�aceres et al.,
2013), and sub-regional (e.g. Arcos et al., 2012) scales. When considering the EXBAS approach, we found relatively good
predictive accuracy and the Boyce index values from the present study are proximal to those obtained in similar works,
focusing for example on mapping concentration areas for migratory birds (Pocewicz et al., 2013). The main differences in the
predictive accuracy of the two approaches likely stems from stacking single-species predictions to obtain richness maps for
InVEST parametrizations. Specifically, richness map obtained by stacking SDMs generated HQ values more accurately
described the observed structure of bird communities. On the contrary, if EXBAS single-species predictions were fairly
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accurate, the richness map derived by their stacking and the subsequent HQ prediction failed to describe the structure of the
whole communities as adequately as the SDM-derived products.

Results from the two alternative InVEST parameterizations mainly reveal that SDMs produced higher HQ values than
EXBAS, with lower variability (see Fig. 2). Particularly, the spatial pattern of HQ values was more clumped and aggregated for
EXBASwhen compared to the SDMs approach. The polarization between high and lowHQ values is clearly visible, where high
HQ values are mostly clustered in the north-west and south parts of the region, dominated by forests and natural ecosystems,
while low values are clustered in south-west and east sides of the region, where agroecosystems are mainly located. This
more emphasized proneness to polarization in EXBAS than SDMs-derived HQ values is mainly attributable to the effect of the
land use polygons used as input in the former, which in turn facilitate the clusterization of high and low HQ values if
compared to the more smoothed values obtained through SDMs (based on continuous remote sensing-derived data such as
EVI). Moreover, comparing results obtained through SDMs and EXBAS approaches, the cluster and outlier analysis showed
good levels of agreement between their relative HQ hotspots within natural and semi-natural land uses, as well as HQ
coldspots within anthropized ones. Accordingly, our findings point out that even using the EXBAS map as an input to
parametrize InVEST, the generalization obtained through using the cluster and outlier approach allows for identification of
natural ecosystems with high HQ values as well as of anthropized ecosystems with low HQ values.

Differences between the outcomes of the two InVEST parametrizations can be explained by (i) availability and reliability of
input data; (ii) scale of implementation; and (iii) purpose of application. SDMs may require detailed field information, which
has to be collected through on-ground systematic surveys (see e.g., sampling costs; Guisan and Thuiller, 2005). Alternatively,
the EXBAS approach requires less intensive data collection but relies on the subjectivity of the experts involved, a consistent
background and an in-depth knowledge of the investigated species in a specific geographic context (Murray et al., 2009).
Therefore, the latter approach seems more suitable than SDMs for large-scale analyses, where no specific focus on single
species is required. Our outcomes also highlighted how using low-resolution spatial information (e.g. CLC maps), especially at
a broad scale, likely affects the reliability of experts’ evaluations and therefore the final accuracy of the outputs. Although this
effect is largely coherent with the lower accuracy of EXBAS-derived HQ map if compared with SDMs (see Fig. 3), we cannot
exclude that enhancing the EXBAS implementation might increase its overall accuracy and yield different outcomes in
comparison with SDMs. Replicating such a comparison by further refining the EXBAS approach, e.g. through the inclusion of
additional environmental predictors such as topography and hydrography, could represent an interesting future perspective.

4.2. Implications for conservation planning

The spatial distribution of HQ hotspots and coldspots, including their linkages with current land use pattern, demonstrates
that both SDMs and EXBAS approaches coupled with InVEST model may effectively support decision-making processes in
conservation planning. To our knowledge, no specific work evaluating the effectiveness of InVEST for conservation planning
through adopting SDMs or EXBAS approaches is currently available. According to our results, the coverage of HQ hotspots and
coldspots is consistent with that obtained in previous works adopting an expert-based approach, even though at national
scale (Sallustio et al., 2017). Moreover, we found that the comparison of HQ alternatively derived by SDMs and EXBAS ap-
proaches allows for a deep understanding of what are the most important relationships between HQ values and associated
natural, semi-natural, and artificial systems. For example, we highlighted a certain degree of agreement between HQ hotspots
and natural and semi-natural areas, as well as HQ coldspots and anthropized lands such as urban areas. This pattern is
consistent with previous studies that have successfully implemented InVEST to delineate, e.g., urban development bound-
aries in relation with ecological constraints (Liu et al., 2017), ecological security patterns (e.g., corridors and critical patches;
Lin et al., 2016), and different impact of urban growth depending on the naturalness of the surrounding landscape (Sallustio
et al., 2015). Therefore, HQ maps are extremely useful to set conservation priorities, and allocate them over a given territory,
by also considering current land uses and associated threats (cf. Vallecillo et al., 2016). A further understanding (even
spatially-explicit) of how species (birds, in our case) are associated with the investigated territory (i.e., HQ pattern) is crucial
to set conservation planning priorities. For instance, Le Roux et al. (2017) argued that it is possible to reduce the anthropogenic
impact (e.g. from roads) on bat species by identifying and mapping corridors for movements. In the context of systematic
conservation planning, the analysis of the impacts of human activities (agriculture, forestry) on threatened species should
represent a proper balance among land managers and conservationists’ needs, e.g. when establishing new protected areas
(see also Leblond et al., 2014). Consequently, maps of HQ hotspots and coldspots can represent valuable tools for decision-
makers, local administrators, landscape planners and managers dealing with conservation issues (e.g., Marchese, 2015;
Sallustio et al., 2017). Specifically, maps of HQ hotspots and coldspots allow to: (i) bridge the gap between planning, man-
agement, and information side; (ii) identify suitable or unsuitable areas for strengthening or limiting conservation actions;
and (iii) disentangle the complexity of the interactions between anthropogenic activity and ecological functionality.

Our results also confirm that adopting the HQ model for aggregated species (i.e., InVEST) seems to be a cost- and time-
effective approach to obtain spatially-explicit estimations about conservation status across a large area. The EXBAS-InVEST
combination is particularly useful for conservation planning at larger scales, where species-specific and accurate data are
often poor or absent (e.g., Terrado et al., 2016). Nevertheless, for example in the case of modeling species distribution, the
input from experts may be not significant (e.g. Pearce et al., 2001). On the contrary, using SDMs predictions as input data for
conservation planning tools such as InVEST, significantly improves the accuracy and reliability of HQ estimates, especially at a
finer spatial scales (see also He et al., 2017). Finally, the combined use of different spatially-explicit methods for biodiversity
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assessment represents a powerful and promising tool for coupling biodiversity conservation priorities with opportunities for
additional ecosystem services supply (e.g., Lin et al., 2017). In fact, understanding the complex relationships and balance
between biodiversity and other goods and services is required to improve the effective implementation of conservation
practices, not only in protected areas (cf. Kremen and Merenlender, 2018; Vizzarri et al., 2015b).

4.3. Final remarks

In regards to the possible use of these approaches within systematic conservation planning, our results demonstrate that
the combination of SDMs and InVEST model represents a powerful tool to accurately predict spatial patterns of HQ and to
assess areas for biodiversity conservation. However, SDMs implementation may require a certain effort to collect field data
and implement modeling procedures. On the other hand, we highlighted how InVEST parametrized through EXBAS approach
can be used as a surrogate solution in systematic conservation planning, especially in contexts with poor data availability,
budgetary constraints or related to species difficult to deal with because of the lack of data (i.e., rare species, invasive alien
species). Indeed, conservation planners often tend to use inaccurate or biased expert-based habitat maps to save money and
time (e.g. Tulloch et al., 2016).

However, it is worth to highlight that the present results are limited to the comparison of the performances obtained
through implementing two different approaches for HQ assessment, without taking into account the possible influence
played by e.g., ecosystems and habitat heterogeneity or different taxa preferences (e.g., specialist vs generalist species).
Accordingly, further research efforts and comparative studies are needed to better understand the role played by additional
factors (e.g., environmental, ethological etc.) in determining the comparative performances of the two proposed methodo-
logical approaches.

As general remarks, we can conclude that based on our findings: i) the SDMs-driven approach achieved high levels of
predictive accuracy when assessing spatial patterns of habitat quality, while the accuracy of the expert-based approach is
limited; ii) spatial aggregates of habitat quality values are mostly concordant between SDMs and expert-based approaches;
and iii) the expert-based approach represents a surrogate tool for preliminary and/or exploratory studies, especially in
contexts characterized by poor data availability/quality and budgetary constraints.
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